Synthesized speech for model training in cross-corpus recognition of human emotion
نویسندگان
چکیده
Recognizing speakers in emotional conditions remains a challenging issue, since speaker states such as emotion affect the acoustic parameters used in typical speaker recognition systems. Thus, it is believed that knowledge of the current speaker emotion can improve speaker recognition in real life conditions. Conversely, speech emotion recognition still has to overcome several barriers before it can be employed in realistic situations, as is already the case with speech and speaker recognition. One of these barriers is the lack of suitable training data, both in quantity and quality—especially data that allow recognizers to generalize across application scenarios (‘cross-corpus’ setting). In previous work, we have shown that in principle, the usage of synthesized emotional speech for model training can be beneficial for recognition of human emotions from speech. In this study, we aim at consolidating these first results in a large-scale cross-corpus evaluation on eight of most frequently used human emotional speech corpora, namely ABC, AVIC, DES, EMO-DB, eNTERFACE, SAL, SUSAS and VAM, covering natural, induced and acted emotion as well as a variety of application scenarios and acoustic conditions. Synthesized speech is evaluated standalone as well as in joint training with human speech. Our results show that the usage of synthesized emotional speech in acoustic model training can significantly improve recognition of arousal from human speech in the challenging cross-corpus setting. B. Schuller ( ) · Z. Zhang · F. Weninger Institute for Human-Machine Communication, Technische Universität München, 80290 München, Germany e-mail: [email protected] F. Burkhardt Deutsche Telekom Laboratories, Berlin, Germany
منابع مشابه
A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Speech Technology
دوره 15 شماره
صفحات -
تاریخ انتشار 2012